Minggu, 07 Agustus 2011

Otomasi Industri

Transistor

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Transistor through-hole (dibandingkan dengan pita ukur sentimeter)
Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

Cara kerja semikonduktor

Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat diubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

Cara kerja transistor

Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat diubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

Jenis-jenis transistor

BJT symbol PNP.svgPNPJFET symbol P.pngP-channel
BJT symbol NPN.svgNPNJFET symbol N.pngN-channel
BJTJFET
Simbol Transistor dari Berbagai Tipe
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
  • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
  • Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
  • Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
  • Polaritas: NPN atau N-channel, PNP atau P-channel
  • Maximum kapasitas daya: Low Power, Medium Power, High Power
  • Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
  • Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

BJT

BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

FET

FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.

Kondensator

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Kondensator atau sering disebut sebagai kapasitor adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad dari nama Michael Faraday. Kondensator juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.
  • Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Polarized kondensator symbol 3.jpg Lambang kondensator (mempunyai kutub) pada skema elektronika.
  • Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju.
Capacitor symbol.jpg Lambang kapasitor (tidak mempunyai kutub) pada skema elektronika.
Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf (C).
Kapasitor dalam rangkaian elektronik

Kapasitansi

Satuan dari kapasitansi kondensator adalah Farad (F). Namun Farad adalah satuan yang terlalu besar, sehingga digunakan:
  • Pikofarad (pF) = 1\times10^{-12}\,F
  • Nanofarad (nF) = 1\times10^{-9}\,F
  • Microfarad (\mu\,F) = 1\times10^{-6}\,F
Kapasitansi dari kondensator dapat ditentukan dengan rumus:
C=\epsilon_0\epsilon_r\frac{A}{d}
C : Kapasitansi
ε0 : permitivitas hampa
εr : permitivitas relatif
A : luas pelat
d :jarak antar pelat/tebal dielektrik
Adapun cara memperbesar kapasitansi kapasitor atau kondensator dengan jalan:
  1. Menyusunnya berlapis-lapis.
  2. Memperluas permukaan variabel.
  3. Memakai bahan dengan daya tembus besar.

Solenoid

Solenoid.
Solenoid adalah salah satu jenis kumparan terbuat dari kabel panjang yang dililitkan secara rapat dan dapat diasumsikan bahwa panjangnya jauh lebih besar daripada diameternya.[1] Dalam kasus solenoid ideal, panjang kumparan adalah tak hingga dan dibangun dengan kabel yang saling berhimpit dalam lilitannya, dan medan magnet di dalamnya adalah seragam dan paralel terhadap sumbu solenoid.[1]
Kuat medan magnet untuk solenoid ideal adalah:[1]
B = \mu_0 i n \
di mana:
  • B adalah kuat medan magnet,
  • μ0 adalah permeabilitas ruang kosong,
  • i adalah kuat arus yang mengalir,
  • dan n adalah jumlah lilitan.[1]
Jika terdapat batang besi dan ditempatkan sebagian panjangnya di dalam solenoid, batang tersebut akan bergerak masuk ke dalam solenoid saat arus dialirkan.[2] Hal ini dapat dimanfaatkan untuk menggerakkan tuas, membuka pintu, atau mengoperasikan relai.[2]

Frame Relay
Frame Relay ialah teknologi switching yang memfasilitasi koneksi atau hubungan point-to-point atau point-to-multipoint. Frame relay dikembangkan untuk mendukung pengiriman data dengan kecepatan tinggi melalui jaringan telekomunikasi LAN-to-LAN. Tujuannya ialah untuk menyediakan cara untuk mengirim informasi melalui WAN (wide area network) dengan membagi-bagi informasi itu ke dalam bingkai-bingkai (frame) yang berisi informasi tersebut.
Setiap frame memiliki tujuannya masing-masing dan tujuan tiap frame telah ditetapkan oleh jaringan.Untuk sampai ke tempat tujuannya, setiap frame harus mengalami perpindahan berkali-kali dalam jaringan frame relay itu sendiri. Namun demikian, Frame Relay merupakan usaha terbaik dalam dunia jasa layanan networking.

Mekanisme Pengiriman Paket Data Suara melalui Frame Relay

Trafik voice ditransmisi dengan menggunakan virtual circuit. Virtual circuit yang digunakan dapat berupa PVC (permanent virtual circuit) atau SVC (switched virtual circuit). Saat trafik voice dikirim, trafik tersebut terlebih dahulu disegmentasi dan dienkapsulasi. Mesin segmentasi akan menggunakan fragmentasi FRF.12 yang (dikenal juga dengan FRF.11 Anex C) memungkinkan berbagai frame data yang panjang dapat dipecah (difragmentasi) menjadi bagian-bagian kecil dan disisipkan di antara berbagai frame standar (frame real-time). Cara tersebut memungkinkan frame data voice real-time dan nonreal-time dapat dibawa bersama pada beberapa link berkecepatan lebih rendah tanpa menyebabkan kondisi delay yang signifikan pada trafik real-time.
Ukuran (size) segmentasi harus memenuhi kapasitas atau tingkatan line atau port akses. Untuk meyakinkan stabilitas koneksi, ukuran segmentasi di kedua ujung koneksi voice harus dikonfigurasi terlebih dulu agar sesuai. Ketika segmentasi voice dikonfigurasi, semua fungsi priority queueing, custom queueing, dan weighted fair queueing dinonaktifkan dalam interface tersebut. Proses konfigurasi voice dan trafik data melalui data link connection identifier (DLCI) Frame Relay, perlu mempertimbangkan masalah traffic-shaping ke dalam account guna meyakinkan reliabilitas koneksi voice.

Keunggulan Frame Relay

Frame Relay memiliki beberapa kelebihan dibandingkan protokol tipe lain, yaitu:
  • Penggunaan bandwith oleh virtual circuit hanya saat transmisi data. Beberapa virtual circuit dapat secara bersamaan tetap berfungsi di jalurnya masing-masing. Bila diperlukan, setiap virtual circuit dapat menggunakan cadangan bandwith yang ada supaya transmisi data berlangsung lebih cepat.
  • Kecanggihan reliabilitas saluran komunikasi pada Frame Relay, membuat proses pemecahan kesalahan (error-handling process) tidak memakan waktu lama.

Konfigurasi VoFR dengan Cisco

VoFR menggunakan Frame Relay untuk mengirim berbagai trafik voice. Sinyal dikrimkan melalui Layer 2 (Ly), sehingga diperlukan konfigurasi beberapa parameter timing di samping elemen-elemen atau fitur-fitur spesifik dial peer dan voice port. VoFR mengacu pada spesifikasi FRF.11 dan FRF.12.
Implementasi VoFR Cisco mendukung tipe-tipe panggilan VoFR seperti Trunk Static FRF.11 dan panggilan Swiitched VoFR. Tipe kedua meliputi panggilan Dynamic switched dan panggilan Cisco Trunk (private line).
VoFR memungkinkan sebuah device Cisco membawa trafik voice melintasi jaringan Frame Relay. Trafik tersebut dapat berupa panggilan telepon atau fax.

Konfigurasi Frame Relay untuk Mendukung Suara

Konfigurasi Frame Relay guna mendukung voice menggunakan aplikasi map class. Map class disambungkan ke sebuah DLCI tunggal atau ke sebuah grup DLCI, tergantung pada bagaimana class tersebut diterapkan ke virtual circuit. Jika di sana terdapat banyak PVC untuk dikonfigurasi, berikan property traffic-shaping yang sama ke PVC tersebut. Nilai untuk setiap PVC tidak ditetapkan secara statis. Multimap class dengan variable-variabel berbeda untuk masing-masing map class dapat juga dibuat. Pengonfigurasian map class terdiri dari dua tahap, yaitu mengonfigurasi map class untuk mendukung trafik voice dan mengonfigurasi map class untuk parameter-parameter traffic -shaping.
Aplikasi map class tersebut menuntut adanya sejumlah bandwith cadangan. Jika tidak memiliki cadangan bandwith yang cukup, panggilan-panggilan baru akan ditolak. Saat menghitung jumlah bandwith yang dibutuhkan, jangan lupa untuk memasukkan overhead pemaketan (packetization) voice, tidak hanya bandwith dasar pembicaraan codec.
Dalam setiap packet voice, terdapat enam sampai tujuh byte dari total overhead, termasuk header dan flag Frame Relay standar. Untuk beberapa subchannel (CID) dengan penomoran kurang dari 64, overhead-nya sebesar 6 byte. Untuk subchannel dengan penomoran lebih besar atau sama dengan 64, overheadnya 7 byte. Tambahan satu byte jika nomor urutan voice diaktifkan dalam paket-paket voice.

Konfigurasi Dial Peer untuk VoFR

Dial peer adalah penjelasan mengenai entiti-entiti ke dan dari mana sebuah panggilan (call) dibentuk. Semua teknologi voive akan menggunakan dial peer untuk menetapkan karakteristik-karakteristik yang berhubungan dengan yang disebut call leg, yakni segmen diskrit dari sebuah koneksi panggilan yang terjalin di antara dua titik koneksi.
Pada sebuah line panggilan end-to-end akan dilibatkan empat call leg, yakni dua call leg dari perspektif rute sumber (source route) dan dua call leg dari perspektif rute tujuan (destination route). Dial peer ini berfungsi mengaplikasikan atribut tertentu ke beberapa call leg dan mengidentifikasi asal dan tujuan panggilan. Atribut yang diaplikasikan ke sebuah call leg antara lain berbagai fitur quality of service (QoS), misalnya IP RTP Priority dan IP Precedence, compression atau decompression (codec), voice activity detection (VAD), dan fax rate.
Untuk mengonfigurasi sebuah dial peer VoFR, dial peer harus diperkenalkan secara unik. Cara-cara yang dapat digunakan ialah memberinya nomor tag tertentu dan menetapkan nomor port serial keluaran (outgoing) serta nomor virtual circuit. Selain itu, perhatikan pula rancangan jaringan-jaringan voice dengan dial plan variable-length, ekspansi nomor, excess digit playout, digit forward, dan rute voice default.Semua aspek tersebut harus sesuai dengan perencanaan dial plan.

Memeriksa Koneksi Voice

Setiap kali membentuk konfigurasi voice, pastikan untuk memeriksanya. Memeriksa koneksi voice switched calls dapat ditempuh melalui beberapa tugas berikut :
  • Angkat handset telepon dan perhatikan apakah disana terdengar nada sambung.
  • Lakukan panggilan dari telepon lokal ke dial peel terkonfigurasi dan perhatikan apakah panggilan berlangsung sempurna.
  • Periksa panggilan-panggilan FXO-FXS untuk sebuah PBX remote. Untuk melakukan hal ini, terdapat dua tahapan. Pertama, angkat handset telepon dan dengarkan nada sambung dari PBX remote yang dimaksud. Kedua, lakukan sambungan ke sebuah nomor telepon sehingga PBX remote mengarahkan ke panggilan tersebut.

Memeriksa Konfigurasi Frame Relay

Untuk mengecek validitas konfigurasi Frame Relay, lakukanlah hal-hal berikut ini :
  • Melihat status PVC-PVC
  • Melihat statistik dan informasi dalam subchanel terbuka
  • Melihat konfigurasi fragmentasi Frame Relay
  • Menampilkan informasi traffic-shaping jika traffic shaping Frame Relay dikonfigurasi. Kemudian gunakan opsi queue untuk menampilkan statistik-statistik antrian.

Contoh Konfigurasi VoFR

Konfigurasi VoFR dapat terjadi pada beberapa kasus, di antaranya ialah sebagai berikut:
  • Dua router menggunakan fragmentasi Framme Relay
  • Dua router menggunakan sebuah PVC VoFR.
  • Router yang menggunakan PVC VoFR dihubungkan ke Cisco MC3810s.
  • Cisco Trunk Calls di antara dua router.
  • FRF.11 Trunk Calls di antara dua router.
  • Contoh konfigurasi Tandem.
  • Cisco Trunk Calls dengan Hunt Groups.

Tidak ada komentar:

Posting Komentar